INTRODUCTION TO TOPOS THEORY

IVAN DI LIBERTI

Achtung!

At each stage of the exercise sheet, you can (and should) give for granted the statements of all the exercises that come before the one you are solving.

Exercises

topoi as spaces

Exercise 1 (\blacksquare). Show that the category of sheaves over the Sierpinski space is a presheaf topos. Which one?

Exercise 2 (\blacksquare). Show that $\mathbf{Set}^{\rightarrow}$ has a closed subtopos and an open subtopos. Please, provide a full proof that the geometric morphisms you present have the property we require, don't just state it.

Exercise 3 (**D**). Let X be a compact Hausdorff space. Show that the direct image of the terminal geometric morphism $\Gamma_* : \mathsf{Sh}(X) \to \mathsf{Set}$ preserve directed colimits of monomorphisms.

topoi as sets

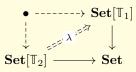
Exercise 4 (\blacksquare). Provide a complete description of the subobject classifier in **Set**^{\mathbb{N}}, where the category structure of \mathbb{N} is the expected posetal one.

Exercise 5 (**D**). Show that every topos has a partial map classifier for every object. *Hint:* What are the partial map classifiers in Set?

Exercise 6 (**D**). Prove that an object of a topos \mathcal{E} is injective (with respect to monos) if and only if it is a retract of Ω^x for some x. Deduce that if e is injective then the functor $[-, e] : \mathcal{E}^\circ \to \mathcal{E}$ preserves reflexive coequalizers.

Date: February 5, 2024.

topoi as theories **Exercise 7** (**I**). Consider the category of non empty finite sets $Fin_{>0}$. What theory does $Set^{Fin_{>0}}$ classify? **Exercise 8** (**I**). Consider the category of finite sets and monomorphisms Fin_{\rightarrow} . What theory does $Set^{Fin_{\rightarrow}}$ classify? **Exercise 9** (**I**). Consider the category of finite sets and epimorphisms Fin_{\rightarrow} . What theory does $Set^{Fin_{\rightarrow}}$ classify? **Exercise 10** (**I**). Consider the category of pointed finite sets Fin_{\bullet} . What theory does $Set^{Fin_{\rightarrow}}$ classify? **Exercise 10** (**I**). Consider the category of pointed finite sets Fin_{\bullet} . What theory does $Set^{Fin_{\bullet}}$ classify? **Exercise 11** (**I**). Consider the comma topos below, and assume comma topoi exist in the bicategory of topoi. Can you describe how does a **Set**-model of the comma topos look like (in terms of models of T_1 and T_2)?



Feel free to assume that \mathbb{T}_1 and \mathbb{T}_2 are single sorted if you wish.

topoi as objects

Exercise 12 (\square), \square). Show that the bicategory of topoi has (pseudo)pushouts. Does the same argument apply to all (pseudo)colimits? *Hint.* This exercise is not as hard as it may seem.

Exercise 13 (\square , \square). Show that the bicategory of topoi has (pseudo)pullbacks. *Hint.* Yes, this exercise is too hard.

Exercise 14 (**D**). Show that if a topos \mathcal{E} is localic, then $\mathsf{Topoi}(\mathcal{F}, \mathcal{E})$ is a poset for every \mathcal{F} .

Exercise 15 (\blacksquare). Show that open geometric morphisms are pullback stable.

Exercise 16 (\blacksquare). Show that closed geometric morphisms are pullback stable.

learning by gluing

Exercise 17 (\blacksquare), \blacksquare). Show that there is an equivalence of categories between

 $\mathsf{Sub}_{\mathcal{E}}(1) \simeq \mathsf{Topoi}(\mathcal{E}, \mathbf{Set}^{\rightarrow}).$

Exercise 18 (\blacksquare). Show that the bicategory of topoi has a classifier of closed embeddings, i.e., there exists a closed embedding $p : \mathcal{F}_1 \to \mathcal{F}_2$ such that every closed subtopos can be obtained by pulling back a geometric morphism along p.

Prove an anologous statement also for open embeddings. *Hint.* To get the proper intuition, first solve it for spaces, then for locales, and then for topoi. Also, you may want to start with open embeddings.

Exercise 19 (**D**). Show that every open subtopos is *complemented*, i.e. there exists a closed subtopos that is its complement in the lattice of subtopoi.

 ${\bf Riddle.}$ Show that a presheaf topos ${\sf Set}^{\sf C}$ is boolean if and only if ${\sf C}$ is a groupoid.

Riddle (Freyd). Show that a topos verifies external choice if and only if it is the topos of sheaves over a complete boolean algebra.